
DØ Global Tracking Review

- 1 -

DØ Global Tracking Review

Jim Kowalkowski
Marc Paterno

1 Introduction
This review covered a very large collection of packages, falling into the following groups:

1. tr f++ utility packages. These provide basic utilities used by tr f++, but which are not directly related to
tracking; for example, ptr and tr futil.

2. tr f++ base packages. These packages form the tr f++ framework.

3. Detector specific packages. These classes use the tools in the tr f++ base packages to perform tracking
in each subdetector. We have concentrated on the SMT detector’s software.

4. Global tracking packages. These classes drive the tracking process from the highest level, and provide
the DØ framework Package subclass that forms the basic tracking package for DØReco.

This set of packages is significantly larger than that we have considered in any previous review. Therefore,
we have not been able to review all the material to the depth that we have done in previous reviews. In re-
sponse to the guidance provided by management, we have concentrated on issues of efficiency — meaning
the speed of the reconstruction code, not the tracking efficiency. The best method for determining the speed
of the code, and for finding the parts of the code that are most in need of speed optimization, is to profile an
optimized executable. We were unable to obtain an optimized executable in the time available for this re-
view. We recommend that a follow-up study of an optimized executable be undertaken as soon as possible.
We would be happy to be part of such a study. In the absence of such a study, this document provides a
starting point for discussion of how to improve the tracking code.

In the absence of an optimized executable, we studied the structure of the code, using the SMT tracking
code as an example. We concentrated on the use of the tr f++ tools, and studied the implementation of the
tr f++ toolkit only as was necessary to understand the higher-level code using those tools.

It is important to note that many of the observations and conclusions within this document come from code
sampling. We pulled out samples of code for most of the layers and processing and went through it in de-
tail. The information contained in this document refers to code that lives mostly in the SMT and the tr f++
packages.

2 Overview
The documentation by David Adams, and made available on the web, provides a good general overview of
the tr f++, and to some extent, DØ’s use of tr f++. The tr f++ framework is quite general, and provides a full
set of facilities for building tracking software. In addition to the classes directly supporting the task of
finding tracks, tr f++ provides the following:

1. a persistent object model, used primarily to save the state of the “algorithm” objects or construct ob-
jects in a particular state that are used in the system;

2. matrix and vector classes, used in the representation of positions, track parameters, and the uncertain-
ties associated with these quantities;

3. “smart pointer” class templates, providing a variety of memory management schemes and the ability to
convert an object into a index form to be stored by EDM/dØom or referenced later;

4. a simple event model, used to store the “clusters” and tag events with an ID used in track finding;

- 2 -

5. a set of header files defining constants;

6. a simple geometry package.

We found nothing in the basic design of tr f++ that would indicate it would be inherently inefficient, and
therefore see no need for a significant redesign. All our suggestions are in the realm of implementation,
where additional attention to detail could enhance the maintainability and speed of the code, with little or
no loss of flexibility.

3 Major Concerns
In general, we have found many of the same things here that were found in our review of the muon recon-
struction code. The muon review document is available on our web site1, and the material will not be
duplicated here. The next major section will, however, include examples of where we have found these
problems when appropriate. The sections of the muon review document which have relevance here are:

• Error reporting (Section 3.1.2). It is unclear how error (exceptions/return codes) are handled and re-
ported in this system.

• Problem Decomposition (Section 3.2.2). We looked through several methods of classes that were in
excess of 200 lines. This makes us immediately wonder if the problem has been decomposed correctly.
The lack of object-oriented nature makes such code harder to understand, and thus less likely to be ef-
ficient or correct. Code that is difficult to read is also difficult to maintain, which is an especially
painful burden in the algorithm code, where most of the maintenance and improvement effort is likely
to be concentrated.

• Common Tools and Libraries (Section 4.1). The tracking system contains a large number of utility
classes and code that also exists elsewhere in the DØ infrastructure.

• Classes with Useful Features (Section 4.2).The concept of data objects goes too far in many places.
Classes that use the data objects pull information out and do common manipulation in many different
places; this report goes into more detail about this sort of problem.

• Example MuoHitProcessor Changes (Section 4.3).This example shows a detailed explanation of what
can be does to improve a class and make the code that uses it much more maintainable.

We refer the reader to the muon software review document for more detail on these observations.

As the major goal for this review was to look into the speed of execution of the global tracking software,
we concentrated on issues specifically related to the speed of the code. A few major problems popped out
as we went through the code. Some of these are known to cause performance problems while others are
subject to debate, and should be the subject of further investigation using the profiler.

It is important to note that we have concentrated not on the individual routines which consume the greatest
amount of time (attempting to identify them without the profiling of an optimized executable would be
mere guesswork), but rather on the sorts of smaller (but pervasive) inefficiencies that can “nickel-and-
dime” a program to death.

3.1 Excessive Copying
There are many places in the code where large or complex items are passed by value; often these are col-
lections which are created in a function, and returned (by value) as the return value of the function. STL
containers are not cheap to copy and return by value. The muon review document contains suggestions and
alternatives to this approach. In many places we see data being copied out of objects, just so that data may
be used locally, for the duration of one function. This (usually needless) copying was present in so many
places that it caught our attention as a potential performance problem.

There are many parts of the design where items (such as clusters) are copied from one place (for example,
the chunks in the EDM) to another place (the registry which seems to be the event model of tr f++). Is this

1 The URL for our muon reconstruction software review document is:
http://cdspecialproj.fnal.gov/d0/muonreview/index.html.

DØ Global Tracking Review

- 3 -

done because EDM is not adequate? Is it does so that tr f++ /GTR packages can communicate outside the
framework communications channels? If the EDM is inadequate for the needs of global tracking, it should
be modified. If this is done to retain “experiment independence” of tr f++, then DØ should evaluate the
costs and benefits of this feature. A meaningful measurement of the cost is probably not possible without
the results of profiling an optimized executable.

Object translations are a form of copying and are sometimes necessary. In the case of objects that exist in
large quantities and consume a large amount of resources such as memory, they should be avoided. Con-
sider the SMT code. Here dØom reads in the arrays of data (DSPACK/EVPACK) that represent objects. It
then translates the data to C++ objects. The C++ objects are then translated into tr f++ objects. Manipula-
tions such as this are costly and layers of translation should not exist without a good reason; again, DØ
must weigh the cost in efficiency against the benefits.

3.2 Poorly Organized Objects
Poorly organized objects contain data members that do not properly describe the things the object owns and
manipulates. They are often bloated and can lead to performance and maintenance problems.

Many classes in this system have data members that refer to other data through pointers using inappropriate
data structures. This is typically done through use of STL containers such as map, vector, or list, or the
tr f++ class template array. Many times the quantities that these containers hold are very specific things
such as 2x2 matrices or a point in space and can be directly represented by specific class. A poorly organ-
ized object will end up with a lot of overhead that will actually cause confusion for a person that is
maintaining the system.

An example is the measurement with coordinates (v, z). This point can be represented as an object with two
doubles named iv and iz, referred to as point.v() and point.z(). Manipulating this object (copying it, or
merely accessing the members) is efficient in terms of space and time and easy to grasp. In addition, we can
define operations on this point object.

This point can also be represented by an array<double> that is initialized to have two elements. Now we
pay an additional price to copy the point, because of the generality of array (we have to pay for the extra
pointer and an extra integer, to keep track of the size of the array) and we must do a pointer dereference to
access the members. We also must refer to the values in the array using enumerated values such as IV=0,
IZ=1, using point[IV] and point[IZ] to access the data. Defining specific operations (related to its being a
two-dimensional point) on this object does not make sense because it is just an array; therefore the data
must be manipulated outside the object itself. The only clue that one gets of the meaning of this object is
through the comments in the code. It is more difficult to grasp the concepts for manipulating this object.

Another example is the class SpacePoint. For this class, we pay the price of the virtual table pointer when
most, if not all of the uses to not need something like this. Furthermore, we pay the price of moving seven
doubles (plus the vtable pointer) around instead of just three doubles. The SpacePoint class defines no
arithmetic operations such as scale, distance from, or addition. Without these useful features, developers
end up pulling the values out and manipulating them outside the object. This is a maintenance problem as
well as a source of bugs; it also causes many different solutions to be coded for the same problem.

3.3 STL Container Usage
This document goes into detail about specific issues regarding STL container use in later sections. We be-
lieve that using the STL containers is a very good thing when the problem calls for them. We also believe
that care must be taken to ensure that the application will perform well when STL containers are used. A
list of a few observations follows.

• We found widespread use of maps and multimaps. For some problems, such as configuration manage-
ment, these are the best solutions. Sometimes they are overkill or not used properly. It is important to
note that maps are complex structures for which it costs time to insert and erase items.

• We found widespread use of vectors in places where specific specialized objects may be more appro-
priate. When vectors are used, giving an initial size estimate using reserve that greatly improve
performance.

- 4 -

• We found widespread use of l ists, especially as return-by-value objects. Lists are not cheap to con-
struct or copy, they can involve many heap memory manipulations. Often there was no obvious reason
for the use of list rather than vector; the problem at hand had no need for the manipulations at which
list excels. In the absence of such need, vector is the better choice.

3.4 Objects Without Proper Behavior
This is a general problem that we see in many different pieces of software. Objects do not contain code that
is useful in manipulating them, so each user pulls out the appropriate values and does the calculation. There
is a difference here between a specialized algorithm that must manipulate the data of an object directly, and
common manipulations that belong in the object itself. A simple example is a creation of a unit matrix. The
user should not need to access each element of the matrix and set it to zero or one, it should be able to call a
method that initializes the matrix to a unit matrix. Even specific algorithms can be encapsulated in an
adapter class that is constructed using a reference or pointer to an instance of the data class. This type of
organization is described in the muon review document in the hit manipulation code section. We believe
that this type of organization greatly improves the understanding and maintainability of the code. It also
improves the robustness of the code.

3.5 Old Code
We see much use of array and matrix class templates. Each of these utilities class appear to have counter-
parts in one or more of the STL, or the Zoom or CLHEP libraries, as well as other packages such as the
Standard Matrix Library (a library that we are looking into)2. Why do these class templates exist and what
is their advantage? They do not appear on the surface to provide any benefit and seem to be an extra
maintenance burden, as well as a potential performance problem. These classes also appear to be overused
to represent concepts that are really quite different then arrays and matrices — such as the point or meas-
urement discussed in an earlier section.

3.6 Memory Management
We are concerned that the ptr package is too much a heavy-weight management scheme. In his popular
book Effective C++, Scott Meyes illustrates a technique that seems like it may be more appropriate here.
Basically, each object can contain an integer that is used for reference counting and the Ptr template would
manipulate that reference count. This simple change may significantly effect performance. Without profil-
ing, it is difficult to be sure of this; however, there are commonly-agreed-upon the reasons we expect this to
be true. This is discussed in more detail in Section 6.1, on page 11.

Let us briefly exam the effects of Ptr on short-lived objects such as clusters. By shorter-lived, we mean that
many are constructed and destroyed for each event. For each one of these objects, we must construct a
companion reference count object on the heap; its lifetime is the same as the object that it is paired with.
Depending on the object size, this overhead in terms of time and space can be significant. The Ptr class
itself appears to consist of three pointers (one pointing to the shared management policy table, one pointing
to the object itself, and one for the vtable of the Ptr<T,P> class), so copying a ClusterList will involve the
copy of three pointers for each element in the list. Copies of ClusterList objects are made all over the sys-
tem. A simpler smart pointer system would only involve having one pointer, reducing the size by a factor
of three. An additional benefit would be that the reference count would be stored close by the data of the
object, not in a separately allocated block of data. This locality of reference could yield better memory
cache performance.

The conclusion here is that smart pointers are very important in this system. We believe that the current
implementation is not the best choice for this type of problem and can be improved.

2 The Matrix Template Library (MTL) and documentation for the library is available on the web, at URL
http://www.lsc.nd.edu/research/mtl.

DØ Global Tracking Review

- 5 -

4 Coding Recommendations
We have divided the subjects in this section into two main parts: issues of maintainability and flexibility,
and issues of efficiency. Of course, some issues affect both maintainability and efficiency; in those cases,
we have filed the issue under what seems to us to be its most important facet.

4.1 Maintainability

4.1.1 Naming Conventions
The names of parameters to methods and function did not generally give any indication as to what the
quality or object represents. Names for parameters and variables should indicate roles or something useful
and not just an abbreviated form of the class name.

4.1.2 Obs files and Object Persistence
The obs files contain the information that controls the behavior of the fitting program, by specifying the
paths that are followed in the tracking process. It does not appear that this information is preserved in the
reconstructed data; there is no equivalent of the RCP database or the functionality of RCPID. The Offline
Reconstruction group must decide if this is an important feature for the global tracking system to have. If
so, then it must be decided whether to add these features to the objstream package or to have the algo-
rithms initialized using RCP objects.

There appears to be a need for a certain set of parameters (e.g. minimum transverse momentum, maximum
distance of closest approach) that are of global significance for the tracking; the full set should be identified
by the experts, and they should be pulled out and put into one place for easier modification. Currently these
parameters are scattered throughout many obs files and require an expert to change. Since the parameters
are scattered, it is difficult to be sure that all are covered when a change is made.

We understand the obs files and objstream package to be a light-weight persist object package and that this
package exists because RCP and dØom were either not adequate or not experiment independent. This
should be reexamined. DØ standardized on dØom and it appears that much effort was expended to produce
a second persistency mechanism here in the tracking code. The tracking code is huge, why add all this util-
ity code bulk to the maintenance effort? An experiment independent package can make the assumption that
the experiment has a persistency package and build an abstract interface that allows coupling to it; the
maintenance burden of such an interface would be considerably less than that of the full persistency
mechanism.

4.1.3 Constants
In tr futils there is a definition of constants PI, HALFPI, etc. These all suffer from the “order of static ini-
tialization” problem — if another translation unit makes use of these quantities in its own static
initialization, the language does not guarantee in what order the initialization is to be done. Such constants
should be replaced by static functions, which can return the constants. These functions can be declared
inline, and in an optimized executable will incur no function call overhead. We know of several methods of
producing real constants that are inlined (no symbol table or program bss/data section entries) as opposed
to data member in the executable. The optimizer can do very good things with real constants.

4.1.4 Namespace pollution
Many of the headers pollute the global namespace by hosting some classes from other namespaces (often
but not only std) into the global namespace. At least six headers in five different packages have using
namespace std in a header; more than 130 headers have at least one using std::c, for some class c defined in
the std namespace. Some of these headers are elements of lowest-level tools (such as Ptr.h, in the package
ptr) which are included in many other files, so the problem is endemic.

- 6 -

4.1.5 Insufficient error handling
There are many places in the code where we found insufficient error handling. Generally, this is of the form
“if something goes wrong, write to cout, and return a status code” . Unless the calling code always checks
the status code (it does not, and there is no way to have the compiler require this), the result is an error
message lost in the blizzard of output produced by DØReco, and an error waiting to happen. For example,
in gtrprop, the class SMTPropagator prints messages to cout, and then returns a failure. The messages to
cout is not appropriate.

It would be far better for errors to be indicated by an exception throw; this allows information to be passed
up to a higher level of processing, where an intelligent decision can be made on how to proceed.

Exceptions thrown as shown below will not be at all useful. There is nothing that is set up to catch this type
of exception and the message will not be displayed at all, instead a message “Unknown exception caught”
will be displayed.

if (_reco->this_alg==0) throw "No acceptable algorithm Chosen.";

A slightly better way would be to throw runtime_error(“ No acce…”). A truly useful message would also
contain information identifying the place at which the trouble was detected, and whatever data caused the
failure.

4.1.6 Multiple Implementations of One Concept
There seem to be quite a few classes adding to the bulk of the code base, requiring extra maintenance, but
giving little payoff, because these classes are reproducing what already exists in the standard library. In
some cases, it seems that these classes may be a legacy from early C++ library implementations. Such code
should be modernized, to take advantage of the Standard Library where available. In other cases, packages
for the different subdetectors produce their own classes representing the same abstraction. This creates ad-
ditional bulk. It also ensures that at least one implementation of the given abstraction is non-optimal.

Some examples follow:

1. In tr fzp, SurfPolygon.h introduces its own class Pair. It looks quite like pair<double, double> .

2. nvector is very similar to valarray.

3. tr futil provides the classes matrix and smatrix. Some of the SMT packages use vec-
tor<vector<double> > to represent a matrix, rather than using matrix or smatrix. What are the benefits
of having matrix and smatrix, rather than using an established linear algebra library?

4.1.7 Use of private code
A number of compilation units include files from the framework/pr ivate directory — which the docu-
mentation (not to mention the naming of the directory itself) says should never be done. The interfaces in
these files are not published and are subject to change at any time. Because C++ given no language mecha-
nism by which such illegal usage can be prevented, we must rely on the software designers themselves to
not violate such clear design features.

4.1.8 Missing inclusion guards
A handful of headers do not include preprocessor guards against multiple inclusion. This is clearly danger-
ous. While these headers may currently be used in a manner that does not cause trouble, this is a
maintenance accident waiting to happen.

The list of headers which have no include guards are:

• gtr_evt/src/GTrackChunkTest.hpp
• gtr_evt/src/McTrackChunkTest.hpp
• objstream/src/ObjData_inlined.hpp
• objstream/src/ObjStreamTest.hpp

DØ Global Tracking Review

- 7 -

• objstream/src/ObjTableTest.hpp
• objstream/src/ObjTable_inlined.hpp
• objstream/src/ObjTypeTest.hpp
• smttrack_reco/src/TrackAnalyzer.hpp

4.1.9 Incorrect use of auto_ptr
The class SMTGlblBCollectChunk makes use of the fact that KCC 3.3 has an incorrect implementation of
auto_ptr. The problem is that (according to the Standard) the copy constructor for auto_ptr takes a non-
const reference to another auto_ptr (not a const reference); when a copy is made, the old auto_ptr loses
ownership of (and access to) the object which is pointed to. A library that has a standard-conforming im-
plementation (as does KCC 3.4) will cause a failure when an instance of this class is copied. We should
note that the library that ships with MSVC++ also has the implementation of auto_ptr done incorrectly; at
least only other library is freely available and does not have this flaw3.

In general, it is important to review all use of auto_ptr throughout the code, because of the change in be-
havior from that mandated by the earlier drafts of the Standard to that mandated by the (final) Standard.

4.1.10 Noisy output
GtrFind::process_event() writes to cout on every event. A policy should be set up in the framework for
allowing packages to produce output that can be filtered. If the output is an error or warning message, then
the Zoom error logger must be used.

4.1.11 An obscure idiom
In the file SMTLocalGlobalTrans.cpp (from smt_hitalgs) we find the following code snippet:

if(! _data->first) d1=1,d2=2;

This makes use of the C++ comma operator (which is rarely used, and therefore is a source of maintenance
mistakes). It uses the fact that the two expressions separated by the comma operator form a single state-
ment, and thus do not need to be enclosed in braces. This is very dangerous, since someone less
knowledgeable about C++ than the code’s original author could easily introduce a subtle mistake that
would not be a compilation error, but would lead to incorrect runtime behavior.

4.2 Efficiency

4.2.1 Inappropriate generality
Several classes in the tracking system suffer needless overhead because of classes which are overly general
— that is, they have flexibility that is not need, but still must be paid for, in either time or space, or both.

4.2.1.1 Inappropriate use of dynamically sized collections
The class templates vector and array (from tr futil) are both dynamically-sized collections. This comes at a
cost: the collected objects must be stored on the heap (thus degrading locality of reference, when many
such collections are used together), and extra memory is required, to hold the pointer to the data and the
number of elements stored — this overhead can be significant if the collection itself is small4. The poor
locality of reference may be more costly than the extra bulk of the objects, since it will increase the fre-
quency of cache misses — and modern processors slow dramatically whenever a cache miss occurs.

3 The library in question is STLport; it can be downloaded from, and documentation found on, the web at URL:
http://www.stlport.org.
4 The class template array suffers from the additional overhead of a vtable pointer.

- 8 -

For example, SMTHit (from package smt_hit) uses vector<float> , fixed to a size of 5, to represent a com-
bination of 2D and 3D positions. There is no need for the power of vector here, since there will never be
more than 5 elements. Furthermore, it is not clear why there isn’ t a class — or possibly two classes — to
represent this sort of position. It seems that this class consists of two different parts, and that the two parts
are used by different clients. An even worse example is a matrix represented as vector< vector<double> >,
which is found in SMTXyzGlbl from package smt_hit; this is not the only place where this can be found.

4.2.1.2 Inappropriate inheritance
Some classes inherit from base classes that provide functionality that is not needed by the derived class.
When this functionality comes with an associated cost, one must consider if the associated cost is suffi-
ciently large to make the inheritance inappropriate.

The class templates nvector, matrix and smatrix (all in tr futil) all inherit from the class template array. As
mentioned in Section 4.2.1.1, array is a dynamically-sized object. Many of the uses of nvector, matrix and
smatrix have no need for this feature, and thus should not pay the cost for having it. The cost are particu-
larly high in the most commonly used cases of 2×2, 3×3, … 6×6 matrices. In these special cases,
generality is not useful, but it is costly.

The classes ClusZPlane1, ClusZPlane2, ClusZYPlane1, ClusXYPlane2, ClusCylPhi, and ClusCylPhiZ all
inherit from the class McCluster, which represents a simulated cluster. The base class holds a McIdList,
which is a typedef for vector<int> . Thus every instance of each of these classes, even when created from
collider data, must pay the price for carrying an empty vector<int> — which , for KAI C++ on a 32-bit
system, is 16 bytes per cluster (a vector holds an allocator and three pointers). For an event with tens of
thousands of clusters, this is a considerable amount of memory, which will further degrade the locality of
reference of the code using it.

4.2.2 Useless copying
There are a few places where we found apparently needless copying. This may be a result of code mainte-
nance — that is, code that has developed over time. When the code is not easy to read, maintenance can
easily lead to leftover sections of code which are no longer performing a useful function. It is often hard to
identify such portions of code. For example, in GtrFind.cpp (package gtr_find), there is a loop that copies
a list of ChunkIDs into another list, inside a loop, in an slightly obscure idiom5:

GTrackChunk::ChunkList parent_chunks;
parent_chunks.insert(parent_chunks.end(),
 cluster_chunks.begin(), cluster_chunks.end());

 Neither the original list nor the copy is ever modified. Both are passed (by reference) into a constructor of
GTrackChunk. This would seem to be an example of needless copying, but the size of this piece of code
(this one function, GtfFind::process_event() is nearly 200 lines long) makes it hard to tell.

Below is a section of inefficient code. The method “measured_vector” returns a HitVector by value. The
code that uses it makes two temporary copies of the HitVector only to pull out a single value. The work of
creating and destroying the temporary copies of the actual HitVector is a waste of time. This pattern or style
of coding is found in many places.

5 It is unclear why the copy constructor of ChunkList is not used here, since cluster_chunks is also a ChunkList.

DØ Global Tracking Review

- 9 -

// return the measured hit vector
virtual HitVector measured_vector() const =0;

// Fetch u,v,z and plane phi1 for the first hit.
const Surface& srf1 = phit10->get_surface();
double phi1 = srf1.get_parameter(iphi);
double u0 = srf1.get_parameter(idist);
double v0 = phit10->measured_vector()(0);
double z1 = phit10->measured_vector()(1);

4.2.3 Copying of SMT cluster data
The SMT cluster data is copied from its original “chunk” format to its tr f++-based format. This involves a
significant amount of work, for little if any gain. These data should be handled in the same manner as the
cluster data from the CFT, which is created directly in a format usable by tr f++.

5 Design Issues

5.1 Framework Use
Organization, control, and running of the tracking framework executables may be improved by using the
framework’s grouping feature. The descriptions of the SMT packages can be organized into a single RCP
file that can be included at a higher level. When the SMT group RCP file is included, all the packages
within it will be run in the proper order and the proper time. Other parts of the system such as the CFT may
also benefit from this organization.

The standalone object files can be used to cause multiple packages to be registered with the framework
factory. This may simplify creation of executables by introducing an entire set of package that perform a
function all at once, without such a proliferation of standalone object files.

Most of the framework packages still contain all the old-style interface requirements. Nothing needs to be
provided in a subclass of a framework Package except a constructor. This means that the packageName(),
package_name(), and version() methods are never used. Packages should provide a method statusRe-
port().

The following registration with the framework is not appropriate, it results in a string like “SMTCluster-
Pack $Id” to appear in the framework registration table, which is not at all useful. A simple way to do this
is correctly is to get rid of the version() method (it is not necessary) and put “$Name: ” (note the space)
directly into the second parameter of the macro. The variable $Id should be avoided; it is the RCS ID of the
current file and is not very useful, even if the substitution occurred correctly. The variable $Name is the tag
for the current CVS package. This is what most of the other packages use.

FWK_REGISTRY_IMPL(SMTClusterPack,SMTClusterPack::version().c_str())
const string SMTClusterPack::version() {return "$Id";}

It is very easy to introduce new “hooks” or interfaces into the framework that pass data other then the
edm::Event. If packages need to communicate objects between themselves without using the class Event,
then this facility should be considered.

Framework Packages can be constructed outside the framework main routine using the framework’s
makePackage() function from header framework/Testing.hpp. This feature has existed for a long time and
is documented in the Framework User ’ s Guide.

5.2 EDM Usage

5.2.1 Dangerous use of TKey
Further investigation need to be done to determine why mutable is used to such extents in the tracking
chunks. Many uses of the EDM class template TKey return any of the chunks of that type in the event, this

- 10 -

may not be desirable. We have found this use is common in other code we have reviewed, and would rec-
ommend that this ability be removed from the class TKey; to make up for this, the efficiency of
TKey::findAll() would have to be improved.

5.2.2 Mutable members
In GTrackChunk (package gtr_evt), all the data members are declared mutable, thus completely violating
the mechanism by which the EDM assures that objects put into the Event aren’ t modified after insertion. It
is very difficult to tell GTrackChunks are logically const, which is what is required by the EDM. We have
seen mutable members in many of the chunks and had a difficult timing telling if they are cached data, or
data that needs to be passed from package to package and modified. Even if the current version of GTrack-
Chunk does not violate logical const-ness, this widespread use of mutable makes this class prone to
maintenance trouble.

5.3 Magnetic field
The magnetic field class (from mag_field) is not used; instead, a constant (double or float) value is used,
presumably to indicate a uniform field in the z direction. The value of the constant is provided from a cou-
ple of sources:

• read from an obs file, e.g. cft_init.obs, from cft_obs;
• hard-coded into a source file, e.g. GtrFindImp in gtr_find.

We found no places in which the magnetic field was initialized from a value read from an RCP file.

There are many classes which expect this simple representation of the magnetic field. It is unclear exactly
how much work would be involved in making the appropriate classes be aware of a more complex (non-
uniform) magnetic field, but it is clearly not a trivial task.

5.4 Use of the geometry system
How is it made certain that the geometrical description of the DØ detector used by the tracking reconstruc-
tion is the same as that defined by the DØ geometry system? We haven’ t yet found where the DØ geometry
system is used by the tracking code. This may have been only because of insufficient time for us to investi-
gate.

5.5 DOOM Objects in SMT
Almost all of the data classes in the SMT code are derived from d0_Object. We have not been able to fig-
ure out why this is the case.

DØ Global Tracking Review

- 11 -

6 Examples

6.1 Analysis of ClusXYPlane2
As an example of unnecessarily large classes, let’s consider the example of ClusXYPlane2. This class is
similar to several other Cluster subclasses, and was picked at random to be the subject of detailed investi-
gation. This class, and some of those closely related to it, are diagrammed in Figure 1 (page 11).

The size of a single instance of ClusXYPlane2 is considerable. The HitVector associated with each
ClusXYPlane2 contains two doubles (16 bytes total). Each array (from which HitVector derives) also has
an overhead of one int and one pointer to its data, plus an additional vtable pointer (12 bytes total); this
gives a total of 28 bytes for the HitVector. Similarly, the HitError object contains 3 doubles, to hold a
symmetric error matrix, for a size of 24 bytes. Again, since HitError derives from array, it carries an extra
overhead of 12 bytes, for a total of 36 bytes for the HitError. Not shown on the diagram (for want of space)
is its SurfXYPlane data member; this contains two doubles (16 bytes) plus a vtable pointer, for a total of 20
bytes. Finally, ClusXYPlane2 inherits from McCluster, so it also contains a McIdList (which is a vector of
ints); for an empty vector, the size is 16 bytes; ClusXYPlane2 also carries its own vtable pointer, for 4 more
bytes. The inheritance of McCluster from Cluster (and from TrfObject and ObjType) carries no additional
size overhead. This gives the total size of a ClusXYPlane2 instance of 104 bytes. In addition to its sheer
size, it is important to note that this memory is not contiguous — the two doubles for the HitVector are held
in one region of memory, the three for the HitError are held in a different region of memory, and those of
the rest of the object are held in a third location. Figure 2 (page 12) shows this memory layout.

We would propose an alternate design for this class. First, we would start with a 2D position class, which
would hold the two double measurements by value, and which would need no virtual functions; this would

ClusXYPlane2

McCluster

Cluster

McIdList

HitVector

HitError

nvector

T«bind»(double)

array

Parameter1

smatrix

T

«bind»(double)

Figure 1 ClusXYPlane2 and related classes.

- 12 -

replace HitVector, and have a size of 16 bytes. Simi-
larly, HitError could be replaced by a 2D measurement
error class, which would contain 3 doubles, for a size
of 24 bytes. Since position measurements may be
needed in one, two or three dimensions, a class tem-
plate — templated on both variable type (float or
double) and also on number of measurements — could
be used; similarly, a class template could be used to
replace HitError. With no other modifications, this
would reduce the size of a ClusXYPlane2 object from
104 bytes to 80 bytes. As will be mentioned later, we
would also add a reference count data member (proba-
bly to the base class Cluster), which would keep track
of how many things point to a specific Cluster in-
stance, making it inherently reference-counted; this
would raise the size to 84 bytes. Furthermore, the pro-
posed design would provide better locality of
reference, since a single memory area would be used
for the entire object.

Next, we consider the manner in which instances of
Cluster subclasses are more often used. Very often they
are held in a ClusterList, which is a typedef for
list<ClusterPtr> . The class ClusterPtr, and its related
classes, are shown in Figure 3 (page 12). Let us deter-

mine the size and the memory layout for a collection (we’ ll use vector, to be concrete) of ClusterPtr ob-
jects. (ClusterList is actually based on list, but we observe no case in which the special behavior of list is
important, and suspect that vector would be a superior choice).

A ClusterPtr inherits from ClusterPtrBase, which is a typedef for Ptr<Cluster, SharedDeletePolicy> . A
single instance of ClusterPtr is composed of a TYPE* (4 bytes), a SharedPolicyTable* (4 bytes) and vtable
pointer (because Ptr has a virtual destructor); this is a total of 12 bytes. The SharedPolicyTable contains a
bool (4 bytes, because of the alignment requirements on a 32 bit system), and two ints (4 bytes each), for a
total of 12 bytes. Thus the first ClusterPtr made to point to a given cluster costs 24 bytes; each copy made
from the first costs an additional 12 bytes (because the SharedPolicyTable is not copied).

So, if we make a
vector of Clus-
terPtr objects, and
fill it with NCLUS
pointers, we end
with a vector re-
quiring:

• 16 bytes (for
empty vector);

• 24 * NCLUS
bytes (for the
ClusterPtrs);

• 104 * NCLUS
bytes (for the
clusters ob-
jects, if they
are all in-
stances of the
class
ClusXPlane2).

vtable

pointer

int

double double

vtable

pointer

int

double doubledouble

vtable

double

double

vtable

pointer

alloc

pointer

pointer

Figure 2: Memory layout of ClusXYPlane2.

Cluster

ClusterList

«bind»(Cluster,SharedDeletePolicy)

-_pobject : TYPE*
-_policy : POLICY

Ptr

TYPE, POLICY

-_pobject : Cluster*
-_policy : SharedDeletePolicy

ClusterPtrBase

ClusterPtr

-_valid : bool
-_ref_count : int
-_mref_count : int

SharedPolicyTable

SharedDeletePolicy

Figure 3: ClusterPtr and related classes.

DØ Global Tracking Review

- 13 -

If we have 100 such clusters, the vector is 16 + 2400 + 10400 = 12816 bytes.

Our suggested redesign gave an 84 byte cluster (including the reference count, built into the cluster base
class). Our ClusterPtr only needs to be 4 bytes big, to hold the Cluster*, and it has to manipulate the refer-
ence count in the object — but this doesn't require any virtual functions in the pointer class. So, the size of
a vector<ClusterPtr> carrying NCLUS pointers is:

• 16 bytes (for the empty vector);
• 4 * NCLUS bytes (for our ClusterPtrs);
• 84 * NCLUS bytes (for our clusters, assuming they're all ClusXYPlane2 clusters).

If we have 100 such clusters, memory required for the vector is 16 + 400 + 8400 = 8816 bytes. The existing
design’s vector is 1.45 times larger. If we have many vectors sharing the same pool of clusters, the com-
parison is more extreme. The existing ClusterPtrs will occupy 24 bytes for the first one pointing to a given
cluster. If that particular pointer is copied, each copy costs an additional 12 bytes (because we don't have to
pay the 12 bytes more for another SharedPolicyTable — we share the one).

Each addition vector for the current design (assuming the clusters are already paid for, and the SharedPoli-
cyTable is paid for) costs 16 + 12 * NCLUS bytes; for our suggested redesign, it costs 16 + 4*NCLUS
bytes. In the limit of large vectors, when the overhead of vector itself is negligible, the current design
makes vectors that are 3 times larger than our suggested redesign. Since collections of ClusterPtr are used
widely, the total savings in memory usage may be significant. Perhaps more importantly, the locality of
reference for the redesigned classes will be significantly better.

- 14 -

6.2 Analysis of ClusFindZPlane2
The following code illustrates a whole series of problems that occur throughout the code. Each of the
problems is label with a number and explained below.

// relevant method call
HitVector ClusZPlane2::get_hm() const;

// relevant data member type from ClusFindZPlane2

①
typedef std::multimap<double,ClusterPtr,std::less<double> > ClusterMap;

int ClusFindZPlane2::add_cluster(const ClusterPtr& pclu) {
double keyval; // declare the key value

// Extract the cluster position depending on type

②
if (pclu->get_type() == ClusZPlane2::get_static_type()) {

③
const ClusZPlane2& clu = (const ClusZPlane2&) *pclu;
assert(clu.get_surface() == _szp);

④
keyval = clu.get_hm()(ClusZPlane2::IX);

} else {

⑤
assert(false);
return 1;

}

// Check there is no other cluster at this position.

⑥
ClusterMap::const_iterator iclu = _clusters.find(keyval);

⑦
for (; iclu!=_clusters.end(); ++iclu)
{

assert((*iclu).second != pclu);
}

// Store the cluster.
clusters.insert(ClusterMap::value_type(keyval,pclu));

return 0;
}

• ① The use of a multimap where a double is a key immediately caught our attention. This does not
seem to be appropriate because of round-off errors, which could easily lead to keys which are indented
to match, but which fail to do so. The particular use of multimap in this class is common amongst the
ClusFind classes. This multimap appears to be high overhead for what it is used for — keeping the
clusters in order as they are added. A substitute could be a vector that is given an initial space reserva-
tion. The clusters could be pushed onto the vector when added. A new verify phase can be added that
will sort the cluster vector and check for duplicates (this is a very efficient process).

• ② Using the ObjType/ObjTable utilities in this fashion appears to be a substitute for dynamic_cast.
The problem here is that this is a very expensive operation compared with dynamic_cast. It appears
that a call to get_type() looks like this: get_type() → vtable[x] → get_static_type() →
map<string,funcptr> lookup. A dynamic_cast is typically a lookup in the vtable for a structure, then
retrieval of an integer value from that structure. This use of ObjTable utilities should be removed.

• ③ Hard casting in this fashion is by no means guaranteed to work, according to the C++ standard. In
fact, we have found specific instances where it does not work. The use of dynamic_cast would remove
this possibility of failure.

DØ Global Tracking Review

- 15 -

• ④ The get_hm() method of the cluster class returns an instance of a HitVector. This is very inefficient
considering that all that is need is a single number. In fact, the returned HitVector is a temporary that
will not (and can not) be used again.

• ⑤ This code will abort when not optimized and return a 1 if optimized. Return codes like this do not
give any indication as to the severity of the problem; an exception may be more appropriate. A prob-
lem with return code is that they are not checked in many places, this appears to be the case here.

• ⑥ The find method of multimap return any one of the exact matches for this key. This is likely to not
be the first one and will lead to undesirable results.

• ⑦ The code inside this loop is only present in the unoptimized executable. This loop will only be
wasting time in the optimized executable. This loop will most likely not start at the correct place be-
cause of the use of find().

7 Conclusion
Because of the size of this system, we were not able to deal with the design at the same level of detail with
which we review other software systems. We therefore have no observations on the global structure of the
design. Instead, we have concentrated primarily on coding details of the sampling of classes and functions
which we were able to analyze in the time available.

In this document, was have given an overview of some of the features of the global tracking software that
we would expect to lead to difficulty in maintenance, and also to inefficiency (meaning the speed of the
code, not the tracking efficiency). Our discussion of efficiency is limited because of the unavailability of an
optimized tracking executable, with which to perform profiling.

When such profiling becomes possible, we expect analysis of this system will be difficult and that there
will be no one thing or even a hand full of things that are causing trouble. Performance penalties are likely
to be spread across many of the classes, methods, and packages.

During the past few weeks we have attempted to study (by performing small experiments) the effects of
memory usage on performance. It is widely publicized and understood that memory usage greatly effects
the amount of work the CPU can do and that it can be a significant bottleneck in a system. In addition, it is
well known that one reason modern CPUs can perform at such high speeds is because of the memory
caches. Therefore, locality of reference is important. The reason that this is relevant here is that heap mem-
ory and pointers are used very liberally in this system at all levels. Excessive use of pointers, lookup tables,
heap memory, and return of complex data structures by value can cause cache misses and CPU pipeline
flushes that can dramatically affect performance.

Our studies do show that object size directly relates to the speed at which it can be manipulated. If the ob-
ject size is decreased to one half its size, it will take one half the time to move it around. If pointers to data
are removed (such as vectors or arrays) and replaced by classes with fixed size (or even with real C-style
arrays), that performance is increased. This problem is not easy to analyze and quantify and requires further
study.

